Search results for "Gadolinium gallium garnet"

showing 4 items of 4 documents

Identifying the origin of the nonmonotonic thickness dependence of spin-orbit torque and interfacial Dzyaloshinskii-Moriya interaction in a ferrimagn…

2020

Electrical manipulation of magnetism via spin-orbit torques (SOTs) promises efficient spintronic devices. In systems comprising magnetic insulators and heavy metals, SOTs have started to be investigated only recently, especially in systems with interfacial Dzyaloshinskii-Moriya interaction (iDMI). Here, we quantitatively study the SOT efficiency and iDMI in a series of gadolinium gallium garnet (GGG) / thulium iron garnet (TmIG) / platinum (Pt) heterostructures with varying TmIG and Pt thicknesses. We find that the non-monotonic SOT efficiency as a function of the magnetic layer thickness is not consistent with the 1/thickness dependence expected from a simple interfacial SOT mechanism. Mor…

Condensed Matter - Materials ScienceMaterials scienceCondensed matter physicsSpintronics530 PhysicsMagnetismEnergy level splittingMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGadolinium gallium garnetInsulator (electricity)Heterojunction02 engineering and technologyElectron530 Physik021001 nanoscience & nanotechnology01 natural scienceschemistry.chemical_compoundchemistryFerrimagnetismMagnet0103 physical sciences010306 general physics0210 nano-technologySpin orbit torquePhysical Review B
researchProduct

Interfacial Dzyaloshinskii-Moriya interaction and chiral magnetic textures in a ferrimagnetic insulator

2019

The interfacial Dzyaloshinskii-Moriya interaction (DMI) in multilayers of heavy metal and ferromagnetic metals enables the stabilization of novel chiral spin structures such as skyrmions. Magnetic insulators, on the other hand can exhibit enhanced dynamics and properties such as lower magnetic damping and therefore it is of interest to combine the properties enabled by interfacial DMI with insulating systems. Here, we demonstrate the presence of interfacial DMI in heterostructures that include insulating magnetic layers. We use a bilayer of perpendicularly magnetized insulating thulium iron garnet (TmIG) and the heavy metal platinum, and find a surprisingly strong interfacial DMI that, comb…

Materials science530 Physicschemistry.chemical_elementFOS: Physical sciencesInsulator (electricity)02 engineering and technology01 natural sciencesCondensed Matter::Materials Sciencechemistry.chemical_compoundFerrimagnetism0103 physical sciences010306 general physicsCondensed Matter - Materials ScienceCondensed matter physicsSkyrmionGadolinium gallium garnetMaterials Science (cond-mat.mtrl-sci)Heterojunction530 Physik021001 nanoscience & nanotechnologyThuliumchemistryFerromagnetismMagnetic dampingCondensed Matter::Strongly Correlated Electrons0210 nano-technologyPhysical Review B
researchProduct

Pulsed laser deposition of epitaxial yttrium iron garnet films with low Gilbert damping and bulk-like magnetization

2014

Yttrium iron garnet (YIG, Y [subscript 3]Fe[subscript 5]O[subscript 12]) films have been epitaxially grown on Gadolinium Gallium Garnet (GGG, Gd[subscript 3]Ga[subscript 5]O[subscript 12]) substrates with (100) orientation using pulsed laser deposition. The films were single-phase, epitaxial with the GGG substrate, and the root-mean-square surface roughness varied between 0.14 nm and 0.2 nm. Films with thicknesses ranging from 17 to 200 nm exhibited low coercivity (<2 Oe), near-bulk room temperature saturation moments (∼135 emu cm[superscript −3]), in-plane easy axis, and damping parameters as low as 2.2 × 10[superscript −4]. These high quality YIG thin films are useful in the investigation…

Materials scienceCondensed matter physicslcsh:BiotechnologyGeneral EngineeringYttrium iron garnetGadolinium gallium garnetchemistry.chemical_elementYttriumCoercivitylcsh:QC1-999Pulsed laser depositionchemistry.chemical_compoundMagnetic anisotropyNuclear magnetic resonancechemistrylcsh:TP248.13-248.65General Materials ScienceThin filmSaturation (magnetic)lcsh:PhysicsAPL Materials
researchProduct

Nanoscale X-Ray Imaging of Spin Dynamics in Yttrium Iron Garnet

2019

Time-resolved scanning transmission x-ray microscopy (TR-STXM) has been used for the direct imaging of spin wave dynamics in thin film yttrium iron garnet (YIG) with spatial resolution in the sub 100 nm range. Application of this x-ray transmission technique to single crystalline garnet films was achieved by extracting a lamella (13x5x0.185 $\mathrm{\mu m^3}$) of liquid phase epitaxy grown YIG thin film out of a gadolinium gallium garnet substrate. Spin waves in the sample were measured along the Damon-Eshbach and backward volume directions of propagation at gigahertz frequencies and with wavelengths in a range between 100~nm and 10~$\mathrm{\mu}$m. The results were compared to theoretical …

Yttrium iron garnetFOS: Physical sciencesGeneral Physics and AstronomyLarge scale facilities for research with photons neutrons and ions02 engineering and technologySubstrate (electronics)Epitaxy01 natural scienceschemistry.chemical_compoundCondensed Matter::Materials ScienceSpin waveDispersion relationMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesThin film010302 applied physicsPhysicsMicroscopyCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsGadolinium gallium garnetYIG021001 nanoscience & nanotechnologyWavelengthchemistryMagnonics0210 nano-technology
researchProduct